真人一对一直播,chinese极品人妻videos,青草社区,亚洲影院丰满少妇中文字幕无码

0
首頁 精品范文 光電子器件

光電子器件

時間:2023-05-29 17:39:43

開篇:寫作不僅是一種記錄,更是一種創造,它讓我們能夠捕捉那些稍縱即逝的靈感,將它們永久地定格在紙上。下面是小編精心整理的12篇光電子器件,希望這些內容能成為您創作過程中的良師益友,陪伴您不斷探索和進步。

第1篇

論文摘要:納米光電子技術是一門新興的技術,近年來越來越受到世界各國的重視,而隨著該技術產生的納米光電子器件更是成為了人們關注的焦點。主要介紹了納米光電子器件的發展現狀。

1納米導線激光器

2001年,美國加利福尼亞大學伯克利分校的研究人員在只及人的頭發絲千分之一的納米光導線上制造出世界最小的激光器-納米激光器。這種激光器不僅能發射紫外激光,經過調整后還能發射從藍色到深紫外的激光。研究人員使用一種稱為取向附生的標準技術,用純氧化鋅晶體制造了這種激光器。他們先是"培養"納米導線,即在金層上形成直徑為20nm~150nm,長度為10000nm的純氧化鋅導線。然后,當研究人員在溫室下用另一種激光將納米導線中的純氧化鋅晶體激活時,純氧化鋅晶體會發射波長只有17nm的激光。這種納米激光器最終有可能被用于鑒別化學物質,提高計算機磁盤和光子計算機的信息存儲量。

2紫外納米激光器

繼微型激光器、微碟激光器、微環激光器、量子雪崩激光器問世后,美國加利福尼亞伯克利大學的化學家楊佩東及其同事制成了室溫納米激光器。這種氧化鋅納米激光器在光激勵下能發射線寬小于0.3nm、波長為385nm的激光,被認為是世界上最小的激光器,也是采用納米技術制造的首批實際器件之一。在開發的初始階段,研究人員就預言這種ZnO納米激光器容易制作、亮度高、體積小,性能等同甚至優于GaN藍光激光器。由于能制作高密度納米線陣列,所以,ZnO納米激光器可以進入許多今天的GaAs器件不可能涉及的應用領域。為了生長這種激光器,ZnO納米線要用催化外延晶體生長的氣相輸運法合成。首先,在藍寶石襯底上涂敷一層1nm~3.5nm厚的金膜,然后把它放到一個氧化鋁舟上,將材料和襯底在氨氣流中加熱到880℃~905℃,產生Zn蒸汽,再將Zn蒸汽輸運到襯底上,在2min~10min的生長過程內生成截面積為六邊形的2μm~10μm的納米線。研究人員發現,ZnO納米線形成天然的激光腔,其直徑為20nm~150nm,其大部分(95%)直徑在70nm~100nm。為了研究納米線的受激發射,研究人員用Nd:YAG激光器(266nm波長,3ns脈寬)的四次諧波輸出在溫室下對樣品進行光泵浦。在發射光譜演變期間,光隨泵浦功率的增大而激射,當激射超過ZnO納米線的閾值(約為40kW/cm)時,發射光譜中會出現最高點,這些最高點的線寬小于0.3nm,比閾值以下自發射頂點的線寬小1/50以上。這些窄的線寬及發射強度的迅速提高使研究人員得出結論:受激發射的確發生在這些納米線中。因此,這種納米線陣列可以作為天然的諧振腔,進而成為理想的微型激光光源。研究人員相信,這種短波長納米激光器可應用在光計算、信息存儲和納米分析儀等領域中。

3量子阱激光器

2010年前后,蝕刻在半導體片上的線路寬度將達到100nm以下,在電路中移動的將只有少數幾個電子,一個電子的增加和減少都會給電路的運行造成很大影響。為了解決這一問題,量子阱激光器就誕生了。在量子力學中,把能夠對電子的運動產生約束并使其量子化的勢場稱之成為量子阱。而利用這種量子約束在半導體激光器的有源層中形成量子能級,使能級之間的電子躍遷支配激光器的受激輻射,這就是量子阱激光器。目前,量子阱激光器有兩種類型:量子線激光器和量子點激光器。

3.1量子線激光器

近日,科學家研制出功率比傳統激光器大1000倍的量子線激光器,從而向創造速度更快的計算機和通信設備邁進了一大步。這種激光器可以提高音頻、視頻、因特網及其他采用光纖網絡的通信方式的速度,它是由來自耶魯大學、位于新澤西洲的朗訊科技公司貝爾實驗室及德國德累斯頓馬克斯·普朗克物理研究所的科學家們共同研制的。這些較高功率的激光器會減少對昂貴的中繼器的要求,因為這些中繼器在通信線路中每隔80km(50mile)安裝一個,再次產生激光脈沖,脈沖在光纖中傳播時強度會減弱(中繼器)。

3.2量子點激光器

由直徑小于20nm的一堆物質構成或者相當于60個硅原子排成一串的長度的量子點,可以控制非常小的電子群的運動而不與量子效應沖突。科學家們希望用量子點代替量子線獲得更大的收獲,但是,研究人員已制成的量子點激光器卻不盡人意。原因是多方面的,包括制造一些大小幾乎完全相同的電子群有困難。大多數量子裝置要在極低的溫度條件下工作,甚至微小的熱量也會使電子變得難以控制,并且陷入量子效應的困境。但是,通過改變材料使量子點能夠更牢地約束電子,日本電子技術實驗室的松本和斯坦福大學的詹姆斯和哈里斯等少數幾位工程師最近已制成可在室溫下工作的單電子晶體管。但很多問題仍有待解決,開關速度不高,偶然的電能容易使單個電子脫離預定的路線。因此,大多數科學家正在努力研制全新的方法,而不是仿照目前的計算機設計量子裝置。

4微腔激光器

微腔激光器是當代半導體研究領域的熱點之一,它采用了現代超精細加工技術和超薄材料加工技術,具有高集成度、低噪聲的特點,其功耗低的特點尤為顯著,100萬個激光器同時工作,功耗只有5W。該激光器主要的類型就是微碟激光器,即一種形如碟型的微腔激光器,最早由貝爾實驗室開發成功。其內部為采用先進的蝕刻工藝蝕刻出的直徑只有幾微米、厚度只有100nm的極薄的微型園碟,園碟的周圍是空氣,下面靠一個微小的底座支撐。由于半導體和空氣的折射率相差很大,微碟內產生的光在此結構內發射,直到所產生的光波積累足夠多的能量后沿著它的邊緣折射,這種激光器的工作效率很高、能量閾值很低,工作時只需大約100μA的電流。

長春光學精密機械學院高功率半導體激光國家重點實驗室和中國科學院北京半導體研究所從經典量子電動力學理論出發研究了微碟激光器的工作原理,采用光刻、反應離子刻蝕和選擇化學腐蝕等微細加工技術制備出直徑為9.5μm、低溫光抽運InGaAs/InGaAsP多量子阱碟狀微腔激光器。它在光通訊、光互聯和光信息處理等方面有著很好的應用前景,可用作信息高速公路中最理想的光源。

微腔光子技術,如微腔探測器、微腔諧振器、微腔光晶體管、微腔放大器及其集成技術研究的突破,可使超大規模集成光子回路成為現實。因此,包括美國在內的一些發達國家都在微腔激光器的研究方面投人大量的人力和物力。長春光機與物理所的科技人員打破常規,用光刻方法實現了碟型微腔激光器件的圖形轉移,用濕法及干法刻蝕技術制作出碟型微腔結構,在國內首次研制出直徑分別為8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直徑的微碟激光器在77K溫度下的激射闊值功率為5μW,是目前國際上報道中的最好水平。此外,他們還在國內首次研制出激射波長為1.55μm,激射閾值電流為2.3mA,在77K下激射直徑為10μm的電泵浦InGaAs/InGaAsP微碟激光器以及國際上首個帶有引出電極結構的電泵浦微柱激光器。值得一提的是,這種微碟激光器具有高集成度、低閾值、低功耗、低噪聲、極高的響應、可動態模式工作等優點,在光通信、光互連、光信息處理等方面的應用前景廣闊,可用于大規模光子器件集成光路,并可與光纖通信網絡和大規模、超大規模集成電路匹配,組成光電子信息集成網絡,是當代信息高速公路技術中最理想的光源;同時,可以和其他光電子元件實現單元集成,用于邏輯運算、光網絡中的光互連等。

第2篇

摘 要:以納米壓印光柵制作為基礎,研究了適應納米壓印工藝的對接生長材料結構及生長工藝,生長的材料均勻性好,適合后續器件工藝制作。通過理論設計及實驗研究,優化了淺刻蝕有源波導及深刻蝕無源波導的變換結構,降低了器件的轉換損耗及回波損耗。結合后續制作的器件,對接界面插入損耗可以小于1.5 dB。 完成了多種多波長陣列DFB激光器及高性能DFB激光器的制作,包括16通道200 GHz,300 GHz間隔1550 nm波段陣列激光器,4通道20 nm間隔1310 nm波段陣列激光器,雙八分之一相移激光器,非對稱三相移激光器,變節距啁啾調制激光器等,廣泛的驗證了壓印工藝的可靠性及適應性。研究了陣列器件的熱調諧特性及熱串擾特性,取得了器件熱特性數據。為下一步編寫陣列器件波長控制程序取得了實驗數據。依據2012年度InP基AWG測試結果,對AWG的結構設計數據進行了修正并重新設計。修正設計后制作的通道波長間隔為1.56 nm,通道中心波長1549.7 nm,串擾小于1.5dB。完成了四通道陣列激光器與多模干涉結構合波器(MMI)的單片集成芯片的設計、制作與測試, 針對集成芯片完成了器件的封裝設計。由于集成芯片管腳非常多,直流偏置,微波信號,熱調諧信號互相之間存在耦合,串擾,布線交叉等。為此采用了多層過渡板結構,有效的將各個管腳分開,降低電學串擾。搭建芯片測試平臺系統。完成了多波長半導體微環激光器的的制備與測試,采用InP基多量子阱激光器外延材料結構,利用感應耦合等離子體(ICP)干法刻蝕技術和SiO2鈍化工藝,研制了基于環形諧振腔的雙波長半導體激光器樣品,實現了激光光源的單片集成。改變激光器的注入電流,可調節峰值波長與波長間隔。對InP基長波長10 Gb/s 單片集成OEIC光接收機進行了電路建模、共基極和共發射極OEIC集成電路設計、制備與測試,跨組放大器達到10 Gb/s傳輸速率,PIN探測器帶寬實現7.8 GHz,OEIC器件傳輸速率達到4 Gb/s,眼圖清晰。探索了Si基準單片光發射OEIC方案的可行性。該方案是在Si片襯底上濕法腐蝕出溝槽,并在溝槽里濺射金屬層,將FP激光器芯片貼裝在溝槽里,通過金屬層將電極引出,與Si CMOS 激光驅動電路實現準單片集成。

關鍵詞:光子集成芯片 多波長微環激器 多波長陣列激光器 InP基長波長10 Gb/s單片集成OEIC光接收機 納米壓印

Abstract:The coupling efficiency and return loss between deep ridge waveguide and shallow ridge waveguide has been analyzed theoretically,an improved structure with taper has been proposed and fabricated. The result of the made-up device indicates that the insert loss on the butt-joint interface is less than 1.5 dB. Various kinds of multi-wavelength laser array and high-performance DFB lasers has been fabricated which confirmed that the nanoimprint technology is flexible enough for a range of abilities. The thermal tuning and thermal crosstalk attributes are studied which could be used to control the wavelength tuning of the laser array. Modification and redesigning on AWG is proceed based on the test result of the device fabricated in last year. The new device according to the modified design shows the result 1.56 nm wavelength interval and centre wavelength 1 549.7 nm which meet the 200 GHz c-band standard. The design, fabrication and test of the monolithic chip of four channel laser array integrated with MMI combiner are completed. The packing design of the chip is also finish. As there are too many pins of the monolithic chip of which the DC offset, the microwave signal, thermal tuning signal would bring in coupling, crosstalk wiring cross effects each other if use the single layer board, the multilayer transition board is employed to separate the pins, reduce the electrical crosstalk. The chip test platform is also established for this device. The fabrication and test of the dual wavelength semiconductor laser based on micro-ring is also accomplished, which introduce the InP MQW laser wafer, adopt ICP dry etch and SiO2 passivation technology. The sample achieved laser monolithic. The peak wavelength and wavelength interval can be tuned by turn the injection current of this laser. The circuit modeling of the 10 GB/s monolithic OEIC optical receiver based on the InP material is studied. The common base and common emitter OEIC is designed, fabricated and tested. The transmission speed of the TIA is reached 10 GB/s, the bandwidth of the PIN 7.8 G Hz, and the transmission speed of the OEIC component reached 4 GB/s. The eye pattern is clear. The practicality of the quasi monolithic OEIC transmitter based on Si is also explored. We can sputter metal on the ditch corroded by wet etch on Si,and mount the FP laser chip on it. By wiring the electrode to the Si substrate, the quasi monolithic integrated with the Si CMOS laser driver circuit could be achieved.

Key Words:Photonic integrated circuit;Multi-wavelength micro-ring laser;Multi-wavelength semiconductor laser Array 10Gb/s monolithic integrated OEIC receiver based on InP nanoimprint technology butt-joint;Array waveguide gratings

閱讀全文鏈接(需實名注冊):http:///xiangxiBG.aspx?id=49360&flag=1

第3篇

光纖通信技術的發展速度遠遠超過當初人們的預料,光纖已經成為通信網的重要傳輸媒介,現在世界上大約有60%的通信業務經光纖傳輸,到20世紀末將達到85%,但從目前光纖通信的整體水平來看,仍處于初級階段,光纖通信的巨大潛力還沒有完全開發出來。目前,各種新技術層出不窮,密集波分復用技術(DWDM,在同一根光纖內傳輸多路不同波長的光信號,以提高單根光纖的傳輸能力)、摻鉺光纖放大器技術(EDFA,可將光信號直接放大,具有輸出功率高、噪聲小,增益帶寬等優點)已取得突破性進展并得到廣泛的應用。現在DWDM系統和光傳輸設備中,光電技術的比例將從過去比重不到10%達到90%。一種全新的、無需進行任何光電變換的光波通信——“全光通信”,由于波分復用技術和摻鉺光纖放大器技術的進展,也日趨成熟,將在橫跨太平洋和大西洋的通信系統上首次使用,給全球的通信業帶來蓬勃生機。為此提供支撐的就是半導體光電子器件和部件。光電子器件和技術已形成一個快速增長的、巨大的光電子產業,對國民經濟的發展起著越來越大的作用。美國光電子產業振興協會估計,到2003年,光電子產業的總產值將達2000億美元。

Internet應用的飛速增長對電信骨干網帶寬提出越來越高的需求,為滿足需求的增長,人們可以鋪設更多的光纖,或靠提高單路光的信息運載量(現在主干網可以分別工作在2.5Gbps和10Gbps,并已有40Gbps的演示性設備)。但更主要的方法卻是靠發展波分復用技術,增加光纖內通光的路數(光波分復用的實驗記錄已經達到2.64Tbps)。波分復用技術的普遍運用為光電子器件和部件提供了廣闊的、快速增長的市場。無限戰略公司的報告指出:“信號傳輸用1.31μm和1.55μm激光器市場1999年達到13億美元,比去年增加23%;1.48μm信號放大用激光器1999年市場份額達到1.6億美元,比去年增加33%;980nm信號放大用激光器銷售額達2.9億美元,比去年增長121%。整個激光器市場的份額1999年達18億美元,預期2003年將達到30億美元”。美國通信工業研究公司(CIR)的研究預測,北美市場光電子部件的市場規模將由目前的28億美元增長到2003年的61億美元,約每年增長18.5%。密集波分復用設備銷售額也將從1998年的22億美元增加到2004年的94億美元。報告稱雖然10年內全光通信還不會全面商業化,但是全光交換將在幾年內成為市場主流,報告也指出盡管光學部件市場被大公司所占據,但仍有創新性公司進入的可能。

2我國的光電子技術和產業

近10年來我國光電子技術研究在國家“863”計劃和有關部門的支持下有了突飛猛進的進展,在很多領域同國外先進國家只有兩三年的距離,個別領域還處于世界領先地位。

國內光電子有關產業基地在光電子器件、部件和子系統(如激光器、探測器、光收發模塊、EDFA、無源光器件)等已經占領了國內較大的市場份額,初步具備同國外大公司競爭的能力,在毫無市場保護的情況下,靠自己的力量爭得了一席之地,市場營銷逐年有較大的增長,個別產品還取得國際市場相關產品中的銷量最大的成績。我國相應研究發展基地和本領域高技術公司的許多產品填補了國內相關產品的空白,打破國外產品在市場上的壟斷地位,同時爭取進入國際市場。

摻鉺光纖放大器(EDFA)是高速大容量光纖通信系統必需的關鍵部件,國內企業產品占國內市場40%的份額。我國也是目前國際上少數幾個有能力研制PIC和OEIC的國家。808nm大功率激光器及其泵浦的固體綠光激光器,670nm紅光激光器已產品化和商品化并批量占領國際市場。國內移動通信的光纖直放站所用的光電器件,90%使用國產器件,國產1.55μmDFB激光器戰勝了國外器件,占領了100%的國內市場。

但是,我們應當認識到在我國光電子技術發展中,光電子器件、部件雖是光通信、光顯示、光存儲等高技術產業的關鍵部分,但在整個系統和設備成本中所占的比重較小,其產值較低,目前科研開發主要處于跟蹤和小批量生產階段,光電子產業所需的規模化、產業化生產技術目前還未有實質突破;國內研究生產的光電器件和部件有相當部分還未能滿足整機和系統的要求,導致國外器件占據國內市場相當多的份額;在機制上仍未擺脫科研、生產、市場相互脫離的狀況。

我國在光電子技術方面是與國際水平差距相對較小的一個領域,與世界發達國家幾乎同時起步。但是我們應該清醒地認識到我國制造技術的落后和材料水平有限,而國際上光電子產業已經進入加速發展階段,留給我們的時間只有三到五年,如果我們不在目前產業化的技術發展階段進入,就會失去大好時機。機不可失,時不再來,到產業化后期時將要花數倍的力量才能彌補,也許會徹底失去時機,受制于人。

如果一個國家在一代元件上沒有足夠的投資以發展自主能力,就會給外國競爭者提供進入并占領下幾代技術市場的機會。因而在關鍵器件、部件等方面,要通過引進社會資金和風險投資,知識產權入股、開發人員持股等方式加快我國光電子成果的產業化步伐,鼓勵科研人員成果轉化。只要貫徹有“有所為,有所不為”的方針,狠抓創新和高技術成果轉化,打破行業界限,按市場機制聯合國內相關研究和開發單位,共同作好光電子產業化的工作,就一定能發展我國的光電子事業,有望在研究上取得突破,在產業上形成規模經濟,取得我國在該領域應有的市場份額。

第4篇

關鍵詞:光纖通信技術應用發展

光纖通信是利用光作為信息載體、以光纖作為傳輸媒介的通信方式。具有頻帶極寬,通信容量大;損耗低,中繼距離長;抗電磁干擾能力強;無串音干擾,保密性好;體積小重量輕,易于敷設;原材料資源豐富,可節約金屬材料,成本低等獨特優點,決定了它在通信技術里的主導地位。但任何一種技術體系都必須不斷的發展,來滿足用戶不斷的需求,光纖通信技術也不例外。有人認為:光纖通信的傳輸能力已經達到10Tbps,幾乎用不完,而且現在大干線已經建設得差不多,埋地的剩余光纖還很多,光纖通信技術不需要更多的發展,但我認為它還具有很大的發展空間,會有很大的需求和市場。主要體現在:單纖雙向傳輸技術、 光纖到戶(FTTH)接入技術、骨干節點的光交換技術和研發集成光電子器件等方面。

1單纖雙向傳輸技術

單纖雙向傳輸技術是相對于雙纖雙向傳輸來講的,雙纖傳輸時,收發信號分別在不同的兩根光纖里傳輸,而單纖傳輸時,收發信號被調制在不同的波段后在同一根光纖里傳輸。以前為了節約光纖資源,我們不斷在光纖傳輸容量上下工夫,從PDH的8M,34M,140M 到 SDH 的 155M,622M,2.5G,10G 再到 WDM 的320G,1600G等,光纖的傳輸容量不斷增大,從理論上講光纖的傳輸容量是無限的,但受到設備器件的限制,傳輸容量大大降低,達不到理論效果。目前光纖通信傳送網都是通過雙纖雙向傳輸的,假如改用單纖雙向傳輸技術就可以節約一半的光纖資源。對于現存的無數個龐大的光纖通信傳送網來說,可以節約的光纖資源是可想而知的。研發出成熟的單纖雙向傳輸技術具有劃時代意義。目前單纖雙向傳輸技術已有實用,但主要用在光纖末端接入設備:PON無源光網絡、單纖光收發器等設備,骨干傳送網上暫時還沒有用到這個技術。從這個方面來講,這也是光纖通信技術發展的一個方向。

2光纖到戶(FTTH)接入技術

根據社會發展形勢,HDTV高清數字電視是將來的主流業務,怎么實現,就要靠帶寬豐富的FTTH技術。FTTH是一種全透明全光纖的光接入網,適用于引進新業務,對傳輸制式、帶寬和波長等基本上沒有限制,并且ONU安裝在用戶處,供電、維護、升級更新都比較方便。可以認為HDTV是FTTH的主要推動力,即HDTV業務到來時,非FTTH不可。而且在FTTH建成后可以逐步實現三網合一,即寬帶上網接入、有線電視接入和傳統固定電話接入。

FTTH的解決方案通常有P2P點對點或點對多點和PON無源光網絡兩大類。

P2P方案――優點:各用戶獨立傳輸,互不影響,體制變動靈活;可以采用廉價的低速光電子模塊;傳輸距離長。缺點:為了減少用戶直接到局的光纖和管道,需要在用戶區安置一個匯總用戶的有源節點。

PON方案――優點:無源網絡維護簡單;原則上可以節省光電子器件和光纖。缺點:需要采用昂貴的高速光電子模塊;需要采用區分用戶距離不同的電子模塊,以避免各用戶上行信號互相沖突;傳輸距離受PON分比而縮短;各用戶的下行帶寬互相占用,如果用戶帶寬得不到保證時,不單是要網絡擴容,還需要更換PON和更換用戶模塊來解決。PON有多種,一般有如下幾種:(1)APON:即ATM-PON,適合ATM交換網絡。(2)BPON:即寬帶的PON。(3) OPON:采用通用幀處理的OFP-PON。(4)EPON:采用以太網技術的PON,GEPON是千兆畢以太網的PON。(5)WDM-PON:采用波分復用來區分用戶的PON,由于用戶與波長有關,使維護不便,在FTTH中很少采用。

值得一提的是,近來,無線接入技術發展迅速。可用作WLAN的IEEE802.11協議,傳輸帶寬可達54Mbps,覆蓋范圍達100米以上,目前已商用。如果采用無線接入WLAN作用戶的數據傳輸,包括:上下行數據和點播電視VOD的上行數據,對于一般用戶其上行不大,IEEE802.11是可以滿足的。而采用光纖的FTTH主要是解決HDTV寬帶視頻的下行傳輸,當然在需要時也可包含一些下行數據。這就形成“光纖到戶+無線接入”(FTTH+無線接入)的家庭網絡。這種家庭網絡,如果采用PON,就特別簡單,因為此PON無上行信號,就不需要測距的電子模塊,成本大大降低,維護簡單。如果,所屬PON的用戶群體,被無線城域網覆蓋而可利用,那么可不必建設專用的WLAN,只需靠密布于用戶臨近的光纖網來支撐就可實現,與FTTH相差無幾。FTTH+無線接入也是未來的發展方向。

3骨干節點的光交換技術

光交換實際上可表示為:光纖通信傳輸+交換。

光纖只是解決傳輸問題,還需要解決光信號交換問題。過去,通信網都是由金屬線纜構成的,傳輸的是電子信號,交換是采用電子交換機。現在,通信網除了用戶末端一小段外,都是光纖,傳輸的是光信號,而交換的還是電信號。真正合理的方法應該采用光交換的。但目前,由于光開關器件不成熟,只能采用的是 “光―電―光“方式來解決光網的交換,即把光信號變成電信號,待電子交換后,再變換成光信號。顯然這是不合理的辦法,效率不高且不經濟。現在正在開發大容量的光開關器件,用來實現光交換網絡,具有代表性的是ASON-自動交換光網絡。

通常在光網絡里傳輸的信息,一般速度都是高速的,電子開關不能勝任,只能在低次群中實現電子交換。而光交換可實現高速信號的交換。當然,也不是說,一切都要用光交換,特別是低速,顆粒小的信號的交換,應采用成熟的電子交換技術,沒有必要采用不成熟的大容量的光交換技術。當前,在數據網中,信號以 “包”的形式出現,采用所謂“包交換”。包的顆粒比較小,可采用電子交換。然而,在一些骨干節點,它們承擔的是業務匯聚任務,信號速率高,應該考慮采用容量大的光交換。

目前,少通道大容量的光交換已有實用。如用于保護、下路和小量通路調度等,一般采用機械光開關、熱光開關來實現。由于這些光開關的體積、功耗和集成度的限制,通路數一般在8―16個。

電子交換一般有“空分” 和“時分”方式,在光交換中有“空分”“時分”和“波長交換”方式。光纖通信很少采用光時分交換。

光空分交換:采用光開關把光信號從某一光纖轉到另一光纖。空分的光開關有機械的、半導體的和熱光開關等。近來,采用集成技術,開發出MEM微電機光開關,其體積小到mm。已開發出1296x1296MEM光交換機(Lucent),但屬于試驗性質的。

光波長交換:是對各交換對象賦于一個特定的波長。于是,發送某一特定波長就可與某特定對象進行通信。實現光波長交換的關鍵是需要開發實用化的可變波長的光源,光濾波器和集成的低功耗的可靠的光開關陣列等。現已開發出640x640半導體光開關+AWG的空分與波長相結合的交叉連接試驗系統(corning) 。采用光空分和光波分可構成非常靈活的光交換網。

技術成熟的自動交換的光網絡ASON,是光纖通信技術進一步發展的方向。

4研發集成光電子器件

如同電子器件那樣,光電子器件也要走向集成化。雖然不是所有的光電子器件都要集成,但會有相當的一部分是需要而且是可以集成的。目前正在發展的PLC-平面光波導線路,如同一塊印刷電路板,可以把光電子器件,如DFB和DBR半導體激光器、量子阱半導體激光器、波長可調諧半導體激光器、波長可調諧光器、光開關器件、無源光器件、光邏輯器件等需要的器件組裝于其上,也可以直接集成為一個光電子器件。

日本NTT采用PLO技術研制出16x16熱光開關;1x128熱光開關陣列;用集成和混合集成工藝把32通路的AWG+可變光衰減器+光功率監測集成在一起;8波長每波速率為10Gbps的WDM的復用和去復用分別集成在一塊芯片上,尺寸僅15x7mm 。NTT采用以上集成器件構成32通路的OADM 其中有些已經商用。近幾年,集成光電子器件有比較大的改進。

我國的集成光電子器件也有一定進展。集成的小通道光開關和屬于PLO技術的AWG有所突破。但與發達國家尚有較大差距。如果我們不迎頭趕上,就會重復如同微電子落后的被動局面。要實現單纖雙向傳輸也好,FTTH也好,ASON也好,都需要有新的、體積小的、廉價的、集成化的光電子器件來支撐,集成光器件的研發成為光纖通信技術發展必不可少的環節。

5結束語

事實證明光纖通信技術不僅應用在通信的主干線路中,還可以應用在電力通信控制系統中進行監測、控制等,而且在軍事領域的用途也越來越廣泛。為了能在這些領域發揮出其更出色的作用,我們的光纖通信技術就要不斷的更新發展,研究出更經濟、更實用、更方便的光纖通信技術。

參考文獻:

第5篇

本文的主角――陜西師范大學材料科學與工程學院特聘教授胡鑒勇,是國內有機光電子材料研究領域的新生代杰出代表。以有機電致發光二極管(OLED)、有機場效應晶體管(OFET)和有機太陽能電池(OPV)為代表的有機光電子材料和器件是研究的熱點,胡鑒勇博士長期致力于應用于高性能有機光電子器件的新型有機/高分子半導體材料的開發和研究,在高效穩定的有機光電子材料的設計、合成、性能表征及其在有機光電子元器件的應用方面開展了大量創新性研究,取得了一系列原創性成果,逐漸成長為有機光電子材料領域的骨干力量。

勤奮鉆研,鑄就科研里程碑

早1995年大學畢業后,胡鑒勇在家鄉的一所中學擔任了9年的化學教師;2004年留學于日本佐賀大學獲得工學博士學位,隨后進入日本山形大學有機光電子研究中心,OLED研究世界權威科學家城戶淳二教授(Prof. Junji Kido)研究室進行博士后研究,并在日本世界級科研中心-日本理化學研究所RIKEN,跟隨著名有機半導體材料科學家龍宮和男教授(Prof. Kazuo Takimiya)從事特別研究員工作;2015年由陜西師范大學以海外高層次人才-陜西省“百人計劃”特聘教授身份引進到陜師大材料科學與工程學院工作。

“勤奮、刻苦、創新、突破”是胡鑒勇博士的特點,在日本求學工作期間,他參與過一項日本國家研發課題(高效有機電子器件研發),承擔過日本文部科學省、日本新能源和產業技術開發機構(NEDO)和日本科學技術振興機構(JST)資助的多項研究課題。

在有機深藍熒光材料的研究方面胡鑒勇博士貢獻卓著。高效率的深藍發光能最大限度地提高全彩顯示品質或照明的顯色指數,有效降低OLED顯示器的功耗,開發性能好的藍光材料,尤其是具有高的發光效率和CIE色度坐標Y值小于0.10的深藍光材料對于實現高性能的OLED器件意義重大,胡鑒勇博士設計合成了一類新的蒽類衍生物―基于雙蒽的D-A型深藍延遲熒光材料,通過對傳統的藍光始祖材料蒽分子進行一系列結構上的修飾,包括采取苯基為中心橋鏈和pi共軛阻隔基團,在其對位上分別引入以單蒽為核的電子供體單元(D)和電子受體單元(A),形成了具有獨特的雙蒽結構的D-A型材料分子,以該類材料為發光體,成功實現了滿足高清晰度電視(HDTV)藍光標準的高效率器件,對實現高性能OLED器件具有“里程碑”式的創新意義。該工作發表在材料領域國際頂尖期刊《先進功能材料》上(Adv. Funct. Mater. 2014, 24, 2064),并入選SCI高被引論文(top 1%)。

在空氣穩定的、高遷移率的雙極性有機半導體材料的研究方面胡鑒勇博士成績斐然。開發空氣穩定的、高遷移率的n型和雙極性有機半導體材料,是實現高性能OFET的前提。胡鑒勇博士和團隊成員一起合作開發了一種全新的電子受體單元―萘并二噻吩二酰亞胺(NDTI),以其為共聚電子受體中心的D-A型聚合物實現了空氣穩定的,高遷移率的n型和雙極性有機場效應晶體管,該成果發表在美國化學會上(J. Am. Chem. Soc. 2013, 135, 11445),并入選SCI高被引論文(top 1%)。以此為契機,胡鑒勇博士進一步基于NDTI發展了新型雙極性有機小分子材料,并實現了空氣穩定的、可溶液加工的、高遷移率的雙極性有機場效應晶體管和互補邏輯電路(J. Mater. Chem. C, 2015, 3, 4244; Chem. Mater. 2015, 27, 6418)。

在非富勒烯受體材料的研究方面胡鑒勇博士成效顯著。近些年來,以聚合物電子給體和富勒烯電子受體材料為活性層的本體異質結太陽能電池取得了巨大的進步,但由于富勒烯價格昂貴、吸收光譜和能級調制較為困難,開發高效的n型聚合物電子受體材料來替代富勒烯備受業界關注。胡鑒勇博士開發的基于NDTI的有機小分子和聚合物,作為非富勒烯受體材料,在全聚合物OPV器件中取得了較好的光電轉換效率(ACS Macro Lett. 2014, 3, 872)。

迄今為止,胡鑒勇博士以第一作者或通訊作者在Adv. Funct. Mater.; J. Am. Chem. Soc.; Chem. Commun.; Org. Lett.; J. Mater. Chem. C.; Chem. Eur. J.;和J. Org. Chem.等國際著名學術期刊上共發表SCI論文30余篇,受邀撰寫英文論著1章, 在國際學術會議上作講演報告20余次,多次受邀在國內著名大學和學會上做學術交流報告,申請日本專利多項,已授權2項。多年來作為一名有機光電子材料領域的科研人員,胡鑒勇博士兢兢業業、孜孜以求,以自己的實際行動為鑄就科研力量不斷添磚加瓦。

迎接挑戰,提升人生新高度

“十年彈指一揮間”,十年前為了提升人生高度,豐富人生閱歷,胡鑒勇博士以34歲的“高齡”選擇自費出國留學路,付出了常人難以想象的的艱辛和努力;十年后懷揣著拳拳赤子之心,胡鑒勇博士毅然謝絕多家日本和國內公司的誠意邀請,選擇了陜西師范大學作為自己事業發展的新平臺。

為了進一步提升有機光電子材料研究新高度,拓展以有機電致發光二極管(OLED)、有機場效應晶體管(OFET)和有機太陽能電池(OPV)為代表的有機光電子材料和器件在新型信息顯示、綠色節能固體照明和新能源等技術領域的應用前景,胡鑒勇博士爭取到了多項科研課題,在不到一年的時間里,成功打造了一個環境優美、設備一流的先進實驗室和一個小而精致的科研創新團隊,以期在OLED躋身最具發展前景的下一代顯示技術和固態照明技術產業化,OFET應用于有機傳感器、有源矩陣顯示、射頻標簽、電子紙等新興產業,OPV技術光電轉換效率實用化等領域大顯身手,開展更深入、更細致的高端研究工作。

第6篇

Leeds, UK.

Quantum Wells, Wires

and Dots

2009, 538pp.

Paperback

ISBN: 9780470770979

John Wiley

Paul Harrison著

半導體納米材料是納米材料的一個重要組成部分,由于能帶工程而實現的半導體超晶格、量子阱、量子線和量子點這類低維結構具有的獨特物理性質,使得納米薄膜、納米微粒、納米團簇、納米量子點等所顯示出的新穎的電、磁、光以及力學性質,令它們與電子學、光電子學以及通信技術、計算機技術的發展密切相關。納米結構的電子和光子器件將成為下一代微電子和光電子器件的核心。目前它們的發展主要集中在GaN,ZnO,CdS,ZnS,Si,Ge以及碳納米管等方面。

本書是一本關于“量子阱、量子線及量子點”的綜合教科書,為熟悉固態物理的人從理論和計算兩個方面講述了如何計算半導體異質結構中電子、光子的性質及輸運性質。作者采用了類似數學教科書的方法講述了關于半導體納米材料的各種性質,由各個示例給出標準解法并附帶詳細的推導過程及計算程序代碼。讀者可以根據這一系列推導獨立驗證他們自己碰到的新的理論假設并對其作出合理的解釋。就像作者所說的那樣――本書包含“一切”計算半導體異質結構中電子、光子的性質及輸運性質的知識,讀者不需要其他參考書,可以從零開始學習。

不同于前兩版,本書沒有附帶計算機源代碼光盤,但讀者仍然可以從作者的網站上找到幾乎全部書中所用到的相關程序的代碼。此外,新版本還給出了一些新的物質屬性,如散射率、電子傳遞、量子原子團、光波導及量子阱中的光子性質等,大約占全部相關內容的20%。

本書作者Paul Harrison目前是英國利茲大學(University of Leeds)電子與電機工程學院微波及光子研究所教授。主要從事于基于量子力學原理開發新型光電子器件的研究,其研究成果在許多工程領域都有廣泛的應用。

本書適用于半導體及凝聚態物理專業的研究生,以及從事半導體納米材料的相關理論和工業應用研究的從業人員。

靳紹巍,博士生

(中國科學院力學研究所)

第7篇

石家莊十三所是國企事業單位,石家莊十三所就是中國電子科技集團公司第十三研究所,于1956年建于北京,1963年遷至石家莊。十三所是我國成立早、規模大、技術力量雄厚、專業結構配套的綜合性微電子研究所,是國家首批“微電子學與固體電子學”專業工學碩士學位授予單位。

十三所科學研究涉及的專業領域主要包括,微波和毫米波半導體器件及集成電路、砷化鎵超高速集成電路、新型光電子器件及集成電路、微波通訊及光纖通訊部件和整機、微電子機械系統、新型電力電子器件及模塊、半導體專用設備開發、計算機應用研究及開發等。

十三所的宗旨是以高技術研究為先導,以高技術產品為核心,促進高新技術產業的發展。建所四十余年來,已取得2000多項科研成果,十三所實力雄厚,經濟收益良好,有較強的科研、開發能力,生活設施較為完備,環境優美,交通便利,通訊發達,國內外信息交流方便。

(來源:文章屋網 )

第8篇

關鍵詞半導體材料量子線量子點材料光子晶體

1半導體材料的戰略地位

上世紀中葉,單晶硅和半導體晶體管的發明及其硅集成電路的研制成功,導致了電子工業革命;上世紀70年代初石英光導纖維材料和GaAs激光器的發明,促進了光纖通信技術迅速發展并逐步形成了高新技術產業,使人類進入了信息時代。超晶格概念的提出及其半導體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設計思想,使半導體器件的設計與制造從“雜質工程”發展到“能帶工程”。納米科學技術的發展和應用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強大的新型器件與電路,必將深刻地影響著世界的政治、經濟格局和軍事對抗的形式,徹底改變人們的生活方式。

2幾種主要半導體材料的發展現狀與趨勢

2.1硅材料

從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實現大規模工業生產,基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術正處在由實驗室向工業生產轉變中。目前300mm,0.18μm工藝的硅ULSI生產線已經投入生產,300mm,0.13μm工藝生產線也將在2003年完成評估。18英寸重達414公斤的硅單晶和18英寸的硅園片已在實驗室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。

從進一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發中。

理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應對現有器件特性影響所帶來的物理限制和光刻技術的限制問題,更重要的是將受硅、SiO2自身性質的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統集成芯片技術等來提高ULSI的集成度、運算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計算和DNA生物計算等之外,還把目光放在以GaAs、InP為基的化合物半導體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導體材料研發的重點。

2.2GaAs和InP單晶材料

GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點;在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨特的優勢。

目前,世界GaAs單晶的總年產量已超過200噸,其中以低位錯密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產線。InP具有比GaAs更優越的高頻性能,發展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關鍵技術尚未完全突破,價格居高不下。

GaAs和InP單晶的發展趨勢是:

(1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產,預計本世紀初的頭幾年直徑為6英寸的SI-GaAs也將投入工業應用。

(2)。提高材料的電學和光學微區均勻性。

(3)。降低單晶的缺陷密度,特別是位錯。

(4)。GaAs和InP單晶的VGF生長技術發展很快,很有可能成為主流技術。

2.3半導體超晶格、量子阱材料

半導體超薄層微結構材料是基于先進生長技術(MBE,MOCVD)的新一代人工構造材料。它以全新的概念改變著光電子和微電子器件的設計思想,出現了“電學和光學特性可剪裁”為特征的新范疇,是新一代固態量子器件的基礎材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應變補償材料體系已發展得相當成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質結雙極晶體管(HBT)的最高頻率fmax也已高達500GHz,HEMT邏輯電路研制也發展很快。基于上述材料體系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發光二極管和紅光激光器以及大功率半導體量子阱激光器已商品化;表面光發射器件和光雙穩器件等也已達到或接近達到實用化水平。目前,研制高質量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調制器單片集成InP基多量子阱材料和超高速驅動電路所需的低維結構材料是解決光纖通信瓶頸問題的關鍵,在實驗室西門子公司已完成了80×40Gbps傳輸40km的實驗。另外,用于制造準連續兆瓦級大功率激光陣列的高質量量子阱材料也受到人們的重視。

雖然常規量子阱結構端面發射激光器是目前光電子領域占統治地位的有源器件,但由于其有源區極薄(~0.01μm)端面光電災變損傷,大電流電熱燒毀和光束質量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區量子級聯耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯激光器,輸出功率達5W以上;2000年初,法國湯姆遜公司又報道了單個激光器準連續輸出功率超過10瓦好結果。最近,我國的科研工作者又提出并開展了多有源區縱向光耦合垂直腔面發射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質量的新型激光器,在未來光通信、光互聯與光電信息處理方面有著良好的應用前景。

為克服PN結半導體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實驗室發明了基于量子阱內子帶躍遷和阱間共振隧穿的量子級聯激光器,突破了半導體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯激光器(QCLs)發明以來,Bell實驗室等的科學家,在過去的7年多的時間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進展。2001年瑞士Neuchatel大學的科學家采用雙聲子共振和三量子阱有源區結構使波長為9.1μm的QCLs的工作溫度高達312K,連續輸出功率3mW.量子級聯激光器的工作波長已覆蓋近紅外到遠紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調制器和無線光學連接等方面顯示出重要的應用前景。中科院上海微系統和信息技術研究所于1999年研制成功120K5μm和250K8μm的量子級聯激光器;中科院半導體研究所于2000年又研制成功3.7μm室溫準連續應變補償量子級聯激光器,使我國成為能研制這類高質量激光器材料為數不多的幾個國家之一。

目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結構材料發展的主流方向,正從直徑3英寸向4英寸過渡;生產型的MBE和M0CVD設備已研制成功并投入使用,每臺年生產能力可高達3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產型MBE和MOCVD設備的成熟與應用,必然促進襯底材料設備和材料評價技術的發展。

(2)硅基應變異質結構材料。

硅基光、電器件集成一直是人們所追求的目標。但由于硅是間接帶隙,如何提高硅基材料發光效率就成為一個亟待解決的問題。雖經多年研究,但進展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結構,Ge/Si量子點和量子點超晶格材料,Si/SiC量子點材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發光器件和有關納米硅的受激放大現象的報道,使人們看到了一線希望。

另一方面,GeSi/Si應變層超晶格材料,因其在新一代移動通信上的重要應用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。

盡管GaAs/Si和InP/Si是實現光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數等不同造成的高密度失配位錯而導致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進展。

2.4一維量子線、零維量子點半導體微結構材料

基于量子尺寸效應、量子干涉效應,量子隧穿效應和庫侖阻效應以及非線性光學效應等的低維半導體材料是一種人工構造(通過能帶工程實施)的新型半導體材料,是新一代微電子、光電子器件和電路的基礎。它的發展與應用,極有可能觸發新的技術革命。

目前低維半導體材料生長與制備主要集中在幾個比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進展。俄羅斯約飛技術物理所MBE小組,柏林的俄德聯合研制小組和中科院半導體所半導體材料科學重點實驗室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點激光器,工作波長lμm左右,單管室溫連續輸出功率高達3.6~4W.特別應當指出的是我國上述的MBE小組,2001年通過在高功率量子點激光器的有源區材料結構中引入應力緩解層,抑制了缺陷和位錯的產生,提高了量子點激光器的工作壽命,室溫下連續輸出功率為1W時工作壽命超過5000小時,這是大功率激光器的一個關鍵參數,至今未見國外報道。

在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報道了可在室溫工作的單電子開關器件,1998年Yauo等人采用0.25微米工藝技術實現了128Mb的單電子存貯器原型樣機的制造,這是在單電子器件在高密度存貯電路的應用方面邁出的關鍵一步。目前,基于量子點的自適應網絡計算機,單光子源和應用于量子計算的量子比特的構建等方面的研究也正在進行中。

與半導體超晶格和量子點結構的生長制備相比,高度有序的半導體量子線的制備技術難度較大。中科院半導體所半導體材料科學重點實驗室的MBE小組,在繼利用MBE技術和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結構的基礎上,對InAs/InAlAs量子線超晶格的空間自對準(垂直或斜對準)的物理起因和生長控制進行了研究,取得了較大進展。

王中林教授領導的喬治亞理工大學的材料科學與工程系和化學與生物化學系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發技術,成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現出高純、結構均勻和單晶體,幾乎無缺陷和位錯;納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達數毫米。這種半導體氧化物納米帶是一個理想的材料體系,可以用來研究載流子維度受限的輸運現象和基于它的功能器件制造。香港城市大學李述湯教授和瑞典隆德大學固體物理系納米中心的LarsSamuelson教授領導的小組,分別在SiO2/Si和InAs/InP半導體量子線超晶格結構的生長制各方面也取得了重要進展。

低維半導體結構制備的方法很多,主要有:微結構材料生長和精細加工工藝相結合的方法,應變自組裝量子線、量子點材料生長技術,圖形化襯底和不同取向晶面選擇生長技術,單原子操縱和加工技術,納米結構的輻照制備技術,及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學方法制備量子點和量子線的技術等。目前發展的主要趨勢是尋找原子級無損傷加工方法和納米結構的應變自組裝可控生長技術,以求獲得大小、形狀均勻、密度可控的無缺陷納米結構。

2.5寬帶隙半導體材料

寬帶隙半導體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導率、高電子飽和漂移速度和大臨界擊穿電壓等特點,成為研制高頻大功率、耐高溫、抗輻照半導體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應用前景。另外,III族氮化物也是很好的光電子材料,在藍、綠光發光二極管(LED)和紫、藍、綠光激光器(LD)以及紫外探測器等應用方面也顯示了廣泛的應用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍綠光發光材料的研究熱點。目前,GaN基藍綠光發光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達140GHz,fT=67GHz,跨導為260ms/mm;HEMT器件也相繼問世,發展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業有限公司2000年宣稱,他們采用熱力學方法已研制成功2英寸GaN單晶材料,這將有力的推動藍光激光器和GaN基電子器件的發展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因為它們在長波長光通信用高T0光源和太陽能電池等方面顯示了重要應用前景。

以Cree公司為代表的體SiC單晶的研制已取得突破性進展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍綠光LED業已上市,并參于與以藍寶石為襯低的GaN基發光器件的竟爭。其他SiC相關高溫器件的研制也取得了長足的進步。目前存在的主要問題是材料中的缺陷密度高,且價格昂貴。

II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點而得到迅速發展。1991年3M公司利用MBE技術率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導體激光(材料)器件研制的。經過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時,但離使用差距尚大,加之GaN基材料的迅速發展和應用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區材料的完整性,特別是要降低由非化學配比導致的點缺陷密度和進一步降低失配位錯和解決歐姆接觸等問題,仍是該材料體系走向實用化前必須要解決的問題。

寬帶隙半導體異質結構材料往往也是典型的大失配異質結構材料,所謂大失配異質結構材料是指晶格常數、熱膨脹系數或晶體的對稱性等物理參數有較大差異的材料體系,如GaN/藍寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發界面處大量位錯和缺陷的產生,極大地影響著微結構材料的光電性能及其器件應用。如何避免和消除這一負面影響,是目前材料制備中的一個迫切要解決的關鍵科學問題。這個問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應用領域。

目前,除SiC單晶襯低材料,GaN基藍光LED材料和器件已有商品出售外,大多數高溫半導體材料仍處在實驗室研制階段,不少影響這類材料發展的關鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機理等仍是制約這些材料實用化的關鍵問題,國內外雖已做了大量的研究,至今尚未取得重大突破。

3光子晶體

光子晶體是一種人工微結構材料,介電常數周期的被調制在與工作波長相比擬的尺度,來自結構單元的散射波的多重干涉形成一個光子帶隙,與半導體材料的電子能隙相似,并可用類似于固態晶體中的能帶論來描述三維周期介電結構中光波的傳播,相應光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結合脈沖激光蒸發方法,即先用脈沖激光蒸發制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進展,但三維光子晶體的研究,仍是一個具有挑戰性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進展。

4量子比特構建與材料

隨著微電子技術的發展,計算機芯片集成度不斷增高,器件尺寸越來越小(nm尺度)并最終將受到器件工作原理和工藝技術限制,而無法滿足人類對更大信息量的需求。為此,發展基于全新原理和結構的功能強大的計算機是21世紀人類面臨的巨大挑戰之一。1994年Shor基于量子態疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。

所謂量子計算機是應用量子力學原理進行計的裝置,理論上講它比傳統計算機有更快的運算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計算機理想極限。實現量子比特構造和量子計算機的設想方案很多,其中最引人注目的是Kane最近提出的一個實現大規模量子計算的方案。其核心是利用硅納米電子器件中磷施主核自旋進行信息編碼,通過外加電場控制核自旋間相互作用實現其邏輯運算,自旋測量是由自旋極化電子電流來完成,計算機要工作在mK的低溫下。

這種量子計算機的最終實現依賴于與硅平面工藝兼容的硅納米電子技術的發展。除此之外,為了避免雜質對磷核自旋的干擾,必需使用高純(無雜質)和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規則的磷原子陣列等是實現量子計算的關鍵。量子態在傳輸,處理和存儲過程中可能因環境的耦合(干擾),而從量子疊加態演化成經典的混合態,即所謂失去相干,特別是在大規模計算中能否始終保持量子態間的相干是量子計算機走向實用化前所必需克服的難題。

5發展我國半導體材料的幾點建議

鑒于我國目前的工業基礎,國力和半導體材料的發展水平,提出以下發展建議供參考。

5.1硅單晶和外延材料硅材料作為微電子技術的主導地位

至少到本世紀中葉都不會改變,至今國內各大集成電路制造廠家所需的硅片基本上是依賴進口。目前國內雖已可拉制8英寸的硅單晶和小批量生產6英寸的硅外延片,然而都未形成穩定的批量生產能力,更談不上規模生產。建議國家集中人力和財力,首先開展8英寸硅單晶實用化和6英寸硅外延片研究開發,在“十五”的后期,爭取做到8英寸集成電路生產線用硅單晶材料的國產化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應有8~12英寸硅單晶、片材和8英寸硅外延片的規模生產能力;更大直徑的硅單晶、片材和外延片也應及時布點研制。另外,硅多晶材料生產基地及其相配套的高純石英、氣體和化學試劑等也必需同時給以重視,只有這樣,才能逐步改觀我國微電子技術的落后局面,進入世界發達國家之林。

5.2GaAs及其有關化合物半導體單晶材料發展建議

GaAs、InP等單晶材料同國外的差距主要表現在拉晶和晶片加工設備落后,沒有形成生產能力。相信在國家各部委的統一組織、領導下,并爭取企業介入,建立我國自己的研究、開發和生產聯合體,取各家之長,分工協作,到2010年趕上世界先進水平是可能的。要達到上述目的,到“十五”末應形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產能力,以滿足我國不斷發展的微電子和光電子工業的需術。到2010年,應當實現4英寸GaAs生產線的國產化,并具有滿足6英寸線的供片能力。

5.3發展超晶格、量子阱和一維、零維半導體微結構材料的建議

(1)超晶格、量子阱材料從目前我國國力和我們已有的基礎出發,應以三基色(超高亮度紅、綠和藍光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強MBE和MOCVD兩個基地的建設,引進必要的適合批量生產的工業型MBE和MOCVD設備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實用化研究是當務之急,爭取在“十五”末,能滿足國內2、3和4英寸GaAs生產線所需要的異質結材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結構材料的生產能力。達到本世紀初的國際水平。

寬帶隙高溫半導體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應擇優布點,分別做好研究與開發工作。

(2)一維和零維半導體材料的發展設想。基于低維半導體微結構材料的固態納米量子器件,目前雖然仍處在預研階段,但極其重要,極有可能觸發微電子、光電子技術新的革命。低維量子器件的制造依賴于低維結構材料生長和納米加工技術的進步,而納米結構材料的質量又很大程度上取決于生長和制備技術的水平。因而,集中人力、物力建設我國自己的納米科學與技術研究發展中心就成為了成敗的關鍵。具體目標是,“十五”末,在半導體量子線、量子點材料制備,量子器件研制和系統集成等若干個重要研究方向接近當時的國際先進水平;2010年在有實用化前景的量子點激光器,量子共振隧穿器件和單電子器件及其集成等研發方面,達到國際先進水平,并在國際該領域占有一席之地。可以預料,它的實施必將極大地增強我國的經濟和國防實力。

第9篇

一、投資持續加快,新增固定資產增長明顯

1-2月,全行業500萬元以上項目完成投資616.5億元,同比增長71.1%,增速高于去年同期53.5個百分點,高于同期工業投資增速46.4個百分點。前兩個月新增固定資產273.7億元,同比增長48.1%。

二、新開工項目出現下滑,計算機、電子元器件降幅較大

1-2月,全行業新開工項目379個,同比下降6.2%,其中新開工項目下滑較多的領域主要有計算機、電子器件和元件行業,分別下降33%、26%和10%。全行業新開工項目計劃投資額355.7億元,同比下降52.5%,僅為去年同期規模的一半。

三、各行業投資均呈較快增長,光電器件成為投資熱點

1-2月,電子信息制造業十一個行業投資均保持35%以上的增速,其中通信設備、計算機、電子器件和信息機電等行業投資增速較快。通信設備制造業完成投資31.1億元,同比增長56%,增速比去年同期高38個百分點;計算機行業完成投資62.2億元,同比增長75.2%,增速比去年同期高3.2個百分點;電子器件行業完成投資185.5億元,同比增長85.1%,比去年同期高75.5個百分點;電子信息機電行業完成投資128.3億元,同比增長124.7%,比去年同期高104.7個百分點。

值得注意的是,由于國內多條高世代液晶面板生產線開始建設,LED行業投資勢頭迅猛,帶動光電子器件行業投資快速增長,前2個月完成投資102.1億元,同比增長81.4%,占全行業投資的比重達16.6%。同時,計算機整機、半導體分立器件行業投資增速超過300%,占全行業的比重分別為4%和5%,也是拉動全行業投資快速增長的重要力量。

四、各地區投資均有較大提升,江蘇省發展一枝獨秀

1-2月,東部地區完成投資425億元,同比增長61%,高于去年同期36.4個百分點,其中江蘇省完成投資217.8億元,占全國總投資額的35%,成為電子信息產業投資最大的區域。中部地區完成投資135.5億元,同比增長91.8%,高于去年同期74.1個百分點,其中安徽、河南、山西投資增速均超過100%。西部地區完成投資56億元,同比增長114.5%,扭轉去年以來增速持續下降的局面,其中四川、重慶、云南投資增速超過100%。

五、內資企業投資高速增長,港澳臺及外資企業增速回升

第10篇

摘要:半導體量子阱材料的發展,極大地拓寬了光電材料的范圍,而量子阱材料本身也被廣泛應用于制作各種光電器件。本文首先介紹了量子阱的基本原理,然后重點介紹了量子阱器件的結構,最后總結了量子阱的各個應用領域。 關鍵詞:量子阱;器件;紅外探測器;激光器; 1 引言 量子阱器件,即指采用量子阱材料作為有源區的光電子器件,材料生長一般是采用mocvd外廷技術。這種器件的特點就在于它的量子阱有源區具有準二維特性和量子尺寸效應。二維電子空穴的態密度是臺階狀分布,量子尺寸效應決定了電子空穴不再連續分布而是集中占據著量子化第一子能級,增益譜半寬大為降低、且價帶上輕重空穴的簡并被解除,價帶間的吸收降低。 2 量子阱器件基本原理 2.1 量子阱基本原理[1]

半導體超晶格是指由交替生長兩種半導體材料薄層組成的一維周期性結構.以gaas/alas半導體超晶格的結構為例:在半絕緣gaas襯底上沿[001]方向外延生長500nm左右的gaas薄層,而交替生長厚度為幾埃至幾百埃的alas薄層。這兩者共同構成了一個多層薄膜結構。gaas的晶格常數為0.56351nm,alas的晶格常數為0.56622nm。由于alas的禁帶寬度比gaas的大,alas層中的電子和空穴將進入兩邊的gaas層,“落入”gaas材料的導帶底,只要gaas層不是太薄,電子將被約束在導帶底部,且被阱壁不斷反射。換句話說,由于gaas的禁帶寬度小于alas的禁帶寬度,只要gaas層厚度小到量子尺度,那么就如同一口阱在“吸引”著載流子,無論處在其中的載流子的運動路徑怎樣,都必須越過一個勢壘,由于gaas層厚度為量子尺度,我們將這種勢阱稱為量子阱.

當gaas和alas沿z方向交替生長時,圖2描繪了超晶格多層薄膜結構與相應的的周期勢場。其中a表示alas薄層厚度(勢壘寬度),b表示薄層厚度(勢阱寬度)。如果勢壘的寬度較大,使得兩個相鄰勢阱中的電子波函數互不重疊,那么就此形成的量子阱將是相互獨立的,這就是多量子阱。多量子阱的光學性質與單量子阱的相同,而強度則是單量子阱的線性迭加。另一方面,如果兩個相鄰的量子阱間距很近,那么其中的電子態將發生耦合,能級將分裂成帶,并稱之為子能帶。而兩個相鄰的子能帶 之間又存在能隙,稱為子能隙。通過人為控制這些子能隙的寬度與子能帶,使得半導體微結構表現出多種多樣的宏觀性質。 2.2 量子阱器件

量子阱器件的基本結構是兩塊n型gaas附于兩端,而中間有一個薄層,這個薄層的結構由algaas-gaas-algaas的復合形式組成,。 在未加偏壓時,各個區域的勢能與中間的gaas對應的區域形成了一個勢阱,故稱為量子阱。電子的運動路徑是從左邊的n型區(發射極)進入右邊的n型區(集電極),中間必須通過algaas層進入量子阱,然后再穿透另一層algaas。 量子阱器件雖然是新近研制成功的器件,但已在很多領域獲得了應用,而且隨著制作水平的提高,它將獲得更加廣泛的應用。 3 量子阱器件的應用 3.1 量子阱紅外探測器

量子阱紅外探測器(qwip)是20世紀90年展起來的高新技術。與其他紅外技術相比,qwip具有響應速度快、探測率與hgcdte探測器相近、探測波長可通過量子阱參數加以調節等優點。而且,利用mbe和mocvd等先進工藝可生長出高品質、大面積和均勻的量子阱材料,容易做出大面積的探測器陣列。正因為如此,量子阱光探測器,尤其是紅外探測器受到了廣泛關注。

qwip是利用摻雜量子阱的導帶中形成的子帶間躍遷,并將從基態激發到第一激發態的電子通過電場作用形成光電流這一物理過程,實現對紅外輻射的探測。通過調節阱寬、壘寬以及algaas中al組分含量等參數,使量子阱子帶輸運的激發態被設計在阱內(束縛態)、阱外(連續態)或者在勢壘的邊緣或者稍低于勢壘頂(準束縛態),以便滿足不同的探測需要,獲得最優化的探測靈敏度。因此,量子阱結構設計又稱為“能帶工程”是qwip最關鍵的一步。另外,由于探測器只吸收輻射垂直與阱層面的分量,因此光耦合也是qwip的重要組成部分。 3.2 量子阱在光通訊方面的應用

光通信是現代通信的主要方式,光通訊的發展需要寬帶寬、高速、大容量的光發射機和光接收機,這些儀器不僅要求其體積小,質量高,同時又要求它成本低,能夠大規模應用,為了達到這些目的,光子集成電路(pic’s)和光電子集成電路(oeic’s)被開發出來。但是,通常光子集成電路和光電子集成電路是采用多次光刻,光柵技術、干濕法腐蝕技術、多次選擇外延生長mocvd或mbe等復雜工藝,從而可能使銜接部位晶體質量欠佳和器件間的耦合效率低下,影響了有源器件性能和可靠性。

近20年來發展了許多選擇量子阱無序或稱之為量子阱混合(qwi)的新方法,目的在于量子阱一次生長(mocvd-qw)后,獲得在同一外延晶片上橫向不同區域具有不同的帶隙、光吸收率、光折射率和載流子遷移率,達到橫向光子集成和光電子集成的目的,這樣就避免了多次生長和反復光刻的復雜工藝。 4 結語 半導體超晶格和量子阱材料是光電材料的最新發展,量子阱器件的優越性使得它活躍在各種生產和生活領域。目前,在光通信、激光器研制、紅外探測儀器等方面,量子阱器件都得到了廣泛的應用。隨之科學技術的不斷進步,我們相信,半導體超晶格和量子阱材料必然在更多領域發揮其獨特的作用。 參考文獻: [1]陸衛,李寧,甄紅樓等.紅外光電子學中的新族—量子阱紅外探測器[j].中國科學,2009,39(3):336~343. 杜鵬,周立慶.面向工程化應用的量子阱紅外探測材料制備研究[j].激光與紅外,2010,40(11):1215~1219. 畢艷軍,郭志友,于敏麗等. p型gamnas/algaas量子阱紅外探測器研究[j].激光與紅外,2008,38(8):784~786. 譚智勇,郭旭光,曹俊誠等. 基于太赫茲量子阱探測器的太赫茲量子級聯激光器發射譜研究[j].物理學報,2010,59(4):1000~3290. :lunwenwang.co

第11篇

而近年來全國工程教育認證標準發生較大的變化,電子科學與技術專業的電類課程設置,逐漸被光學類課程所取代,影響了各高校專業培養方案的制定。本文通過總結國內各高校電子科學與技術專業基礎與核心課程設置的經驗,分析本科專業對應于電子科學與技術一級學科所屬的各二級學科的基礎知識,對于將集成電路設計設置為電子科學與技術專業核心課程,來完善電子科學與技術專業課程體系設置進行了探討。

1 全國工程教育認證標準

全國工程教育認證是我國高等教育為了融入世界得到全球高等教育界的認可而開展的認證,自2007年開始試點實行。近些年來,全國工程教育認證標準已經成為各高校制定專業培養方案的導向標準。

2011年之前的標準 2011年之前的全國工程教育認證標準指出,電子科學與技術專業的本科生運用所掌握的理論知識和技能,從事信號與信息處理的新型電子、光電子和光子材料及其元器件,以及集成電路、集成電子系統和光電子系統,包括信息光電子技術和光子器件、微納電子器件、微光機電系統、大規模集成電路和電子信息系統芯片的理論、應用及設計和制造等方面的科研、技術開發、教育和管理等工作。

可以看出,2011年之前的全國工程教育認證標準對于電子科學與技術專業的知識要求非常強調電學方面的基礎知識,特別是集成電路和集成電子系統方面的知識,光學方面的知識只是作為輔助。

2012年之后的標準 2012年之后的全國工程教育認證標準指出,電子科學與技術專業包括電動力學、固體物理、微波與光導波技術、激光原理與技術等知識領域的核心內容。2012年之后的全國工程教育認證標準對于電子科學與技術專業的知識要求較以前有了大幅度的簡化,同時也可以看出,電子科學與技術專業的標準更多地強調了光學方面的知識,而減少了電學方面的知識要求,對于集成電路方面的知識沒有做具體要求,只是提出各高校可以根據自己的特長設置特色課程。這個標準似乎更適合光電子科學與技術這樣的本科專業,當然目前國內并沒有光電子科學與技術這樣的本科專業,卻有光信息科學與技術和光電信息科學與工程這樣的本科專業,也就是說此要求跟光學專業的要求是比較接近且有所交叉重疊的。

2 國內高校本科專業課程設置

《電子科學與技術分教指委本科指導性專業規范》指出,電子科學與技術專業涵蓋的學科范圍廣闊,以數學和近代物理為基礎,研究電磁波、荷電粒子及中性粒子的產生、運動、變換及其不同媒質相互作用的現象、效應、機理和規律,并在此基礎上研究制造電子、光電子各種材料及元器件,以及集成電路、集成電子系統和光電子系統,并研究開發相應的設計、制造技術。

清華大學的電子科學與技術本科專業課程設置與2012年之后的全國工程教育認證標準更為接近,在對電學方面的基礎知識進行要求的同時更加強調了光學方面的基礎知識,而復旦、同濟、上海交大、浙江大學、東南大學等眾多高校的電子科學與技術本科專業更多地強調了集成電路、集成電子系統方面的知識,多數都把集成電路方面的知識作為必修的考試科目專業知識。

3 學科知識體系的對應關系

《授予博士、碩士學位和培養研究生的學科、專業目錄》中指出,工科類一級學科電子科學與技術,涵蓋了物理電子學、電路與系統、微電子與固體電子學、電磁場與微波技術等4個二級學科。電子科學與技術本科專業應該涵蓋一級學科所屬各二級學科物理電子學、電路與系統、微電子與固體電子學、電磁場與微波技術等方面的基礎知識,也就是說本科專業應該涵蓋固體物理或半導體物理、半導體器件、集成電路、電磁場等方面的基礎知識是比較合理的,這樣既有利于本科學生將來在本學科領域的繼續深造學習,也有利于適應社會需要而就業。

4 結束語

綜上所述,集成電路設計這樣的課程應該作為電子科學與技術專業核心課程進行設置,有條件的高校還可以分別設置模擬集成電路設計和數字集成電路設計這樣的課程作為專業核心課程。這樣既能滿足本科指導性專業規范的要求,也能滿足為后續碩士博士研究生階段的繼續深造打下基礎,還能適應國家大力發展集成電路設計與制造產業的要求。這樣就需要中國工程教育認證協會對全國工程教育認證的電子科學與技術專業標準做出修改,不再過多強調光學方面的基礎知識,而是更多地要求集成電路與集成電子系統方面的知識,這樣能引導國內各高校回歸到加強電學方面的知識教育的道路上來。

在我國大力支持集成電路設計產業發展的大環境下,本文對于將集成電路設計設置為電子科學與技術專業核心課程,來完善電子科學與技術專業課程體系設置進行了探討。本文探討的內容希望能夠為全國工程教育認證電子科學與技術專業標準的設定提供參考,也可以為兄弟院校相關專業的課程設置提供借鑒。

參考文獻

[1]中國工程教育認證協會.工程教育專業認證標準(試行)[S].2011.

[2]中國工程教育認證協會.工程教育認證標準[S].2012.

第12篇

【論文摘要】:討論納米科學和技術在新時期里發展所面對的困難和挑戰。一系列新的方法將被討論。我們還將討論倘若這些困難能夠被克服我們可能會有的收獲。

納米科學和技術所涉及的是具有尺寸在1-100納米范圍的結構的制備和表征。在這個領域的研究舉世矚目。無論是從基礎研究(探索基于非經典效應的新物理現象)的觀念出發,還是從應用(受因結構減少空間維度而帶來的優點以及因應半導體器件特征尺寸持續減小而需要這兩個方面的因素驅使)的角度來看,納米結構都是令人極其感興趣的。

1. 納米結構的制備

有兩種制備納米結構的基本方法:build-up和 build-down。所謂build-up方法就是將已預制好的納米部件(納米團簇、納米線以及納米管)組裝起來;而build-down 方法就是將納米結構直接地淀積在襯底上。前一種方法包含有三個基本步驟:1)納米部件的制備;2)納米部件的整理和篩選;3)納米部件組裝成器件(這可以包括不同的步驟如固定在襯底及電接觸的淀積等等);“Build-down”方法提供了杰出的材料純度控制,而且它的制造機理與現代工業裝置相匹配,換句話說,它是利用廣泛已知的各種外延技術如分子束外延(MBE)、化學氣相淀積(MOVCD)等來進行器件制造的傳統方法。“Build-down”方法的缺點是較高的成本。

很清楚納米科學的首次浪潮發生在過去的十年中。在這段時期,研究者已經證明了納米結構的許多嶄新的性質。學者們更進一步征明可以用“build-down”或者“build-up” 方法來進行納米結構制造。這些成果向我們展示,如果納米結構能夠大量且廉價地被制造出來,我們必將收獲更多的成果。

2. 納米結構尺寸、成份、位序以及密度的控制

為了充分發揮量子點的優勢之處,我們必須能夠控制量子點的位置、大小、成份已及密度。其中一個可行的方法是將量子點生長在已經預刻有圖形的襯底上。由于量子點的橫向尺寸要處在10-20納米范圍(或者更小才能避免高激發態子能級效應,如對于GaN材料量子點的橫向尺寸要小于8納米)才能實現室溫工作的光電子器件,在襯底上刻蝕如此小的圖形是一項挑戰性的技術難題。對于單電子晶體管來說,如果它們能在室溫下工作,則要求量子點的直徑要小至1-5納米的范圍。這些微小尺度要求已超過了傳統光刻所能達到的精度極限。有幾項技術可望用于如此的襯底圖形制作。

⑴ 電子束光刻通常可以用來制作特征尺度小至50納米的圖形。如果特殊薄膜能夠用作襯底來最小化電子散射問題,那特征尺寸小至2納米的圖形可以制作出來。

⑵ 聚焦離子束光刻是一種機制上類似于電子束光刻的技術。

⑶ 掃描微探針術可以用來劃刻或者氧化襯底表面,甚至可以用來操縱單個原子和分子。最常用的方法是基于材料在探針作用下引入的高度局域化增強的氧化機制的。

⑷ 多孔膜作為淀積掩版的技術。多孔膜能用多種光刻術再加腐蝕來制備,它也可以用簡單的陽極氧化方法來制備。

⑸ 倍塞(diblock)共聚物圖形制作術是一種基于不同聚合物的混合物能夠產生可控及可重復的相分離機制的技術。

⑹ 與倍塞共聚物圖形制作術緊密相關的一項技術是納米球珠光刻術。此項技術的基本思路是將在旋轉涂敷的球珠膜中形成的圖形轉移到襯底上。

⑺ 將圖形從母體版轉移到襯底上的其他光刻技術。幾種所謂“軟光刻“方法, 比如復制鑄模法、微接觸印刷法、溶劑輔助鑄模法以及用硬模版浮雕法等已被探索開發。

3. 納米制造所面對的困難和挑戰

隨著器件持續微型化的趨勢的發展,普通光刻技術的精度將很快達到它的由光的衍射定律以及材料物理性質所確定的基本物理極限。通過采用深紫外光和相移版,以及修正光學近鄰干擾效應等措施,特征尺寸小至80 nm的圖形已能用普通光刻技術制備出。然而不大可能用普通光刻技術再進一步顯著縮小尺寸。采用X光和EUV 的光刻技術仍在研發之中,可是發展這些技術遇到在光刻膠以及模版制備上的諸多困難。目前來看,雖然也有一些具挑戰性的問題需要解決,特別是需要克服電子束散射以及相關聯的近鄰干擾效應問題,但投影式電子束光刻似乎是有希望的一種技術。掃描微探針技術提供了能分辨單個原子或分子的無可匹敵的精度,可是此項技術卻有固有的慢速度,目前還不清楚通過給它加裝陣列懸臂樑能否使它達到可以接受的刻寫速度。轉貼于

對一個理想的納米刻寫技術而言,它的運行和維修成本應該低,它應具備可靠地制備尺寸小但密度高的納米結構的能力,還應有在非平面上刻制圖形的能力以及制備三維結構的功能。此外,它也應能夠做高速并行操作,而且引入的缺陷密度要低。然而時至今日,仍然沒有任何一項能制作亞100 nm圖形的單項技術能同時滿足上述所有條件。現在還難說是否上述技術中的一種或者它們的某種組合會取代傳統的光刻技術。究竟是現有刻寫技術的組合還是一種全新的技術會成為最終的納米刻寫技術還有待于觀察。

4. 展望

目前,已有不少納米尺度圖形刻制技術,它們僅有的短處要么是刻寫速度慢要么是刻寫復雜圖形的能力有限。這些技術可以用來制造簡單的納米原型器件,這將能使我們研究這些器件的性質以及探討優化器件結構以便進一步地改善它們的性能。必須發展新的表征技術,這不單是為了器件表征,也是為了能使我們擁有一個對器件制造過程中的必要工藝如版對準的能進行監控的手段。隨著器件尺度的持續縮小,對制造技術的要求會更苛刻,理所當然地對評判方法的要求也變得更嚴格。隨著光學有源區尺寸的縮小,嶄新的光學現象很有可能被發現,這可能導致發明新的光電子器件。然而,不象電子工業發展那樣需要尋找MOS晶體管的替代品,光電子工業并沒有如此的立時尖銳問題需要迫切解決。納米探測器和納米傳感器是一個全新的領域,目前還難以預測它的進一步發展趨勢。然而,基于對嶄新診斷技術的預期需要,我們有理由相信這將是一個快速發展的領域。總括起來,在所有三個主要領域里應用納米結構所要求的共同點是對納米結構的尺寸、材料純度、位序以及成份的精確控制。一旦這個問題能夠解決,就會有大量的嶄新器件誕生和被研究。

參考文獻

[1] 王淼, 李振華, 魯陽, 齊仲甫, 李文鑄. 納米材料應用技術的新進展[J]. 材料科學與工程,2000.

[2] 吳晶. 電噴霧法一步制備含鍵合相納米微球的研究[D]. 天津大學, 2006.

[3] 張喜梅, 陳玲, 李琳, 郭祀遠. 納米材料制備研究現狀及其發展方向[J]. 現代化工,2000.

[4] 朱雪琴. 納米技術的研究及其應用[J]. 新技術新工藝, 1996.

優秀范文
主站蜘蛛池模板: 靖宇县| 泽普县| 丰原市| 贵南县| 当涂县| 罗城| 高淳县| 广德县| 南川市| 丽江市| 博爱县| 新津县| 平湖市| 神池县| 宜兴市| 白沙| 尼木县| 乌鲁木齐县| 定西市| 佛坪县| 高邑县| 顺义区| 文安县| 沽源县| 垣曲县| 宝兴县| 丽江市| 长汀县| 无锡市| 曲麻莱县| 兴义市| 儋州市| 武宁县| 黄大仙区| 钟祥市| 南陵县| 长治市| 大名县| 封丘县| 丹东市| 镇坪县|